Negative Association Rules

نویسندگان

  • Maria-Luiza Antonie
  • Jundong Li
  • Osmar R. Zaïane
چکیده

Mining association rules associates events that took place together. In market basket analysis, these discovered rules associate items purchased together. Items that are not part of a transaction are not considered. In other words, typical association rules do not take into account items that are part of the domain but that are not together part of a transaction. Association rules are based on frequencies and count the transactions where items occur together. However, counting absences of items is prohibitive if the number of possible items is very large, which is typically the case. Nonetheless, knowing the relationship between the absence of an item and the presence of another can be very important in some applications. These rules are called negative association rules. We review current approaches for mining negative association rules and we discuss limitations and future research directions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining negative association rules

The focus of this paper is the discovery of negative association rules. Such association rules are complementary to the sorts of association rules most often encountered in literatures and have the forms of X→¬Y or ¬X→Y. We present a rule discovery algorithm that finds a useful subset of valid negative rules. In generating negative rules, we employ a hierarchical graph-structured taxonomy of do...

متن کامل

Mining Positive and Negative Association Rules: An Approach for Confined Rules

Typical association rules consider only items enumerated in transactions. Such rules are referred to as positive association rules. Negative association rules also consider the same items, but in addition consider negated items (i.e. absent from transactions). Negative association rules are useful in market-basket analysis to identify products that conflict with each other or products that comp...

متن کامل

Mining Spatial Gene Expression Data Using Negative Association Rules

Over the years, data mining has attracted most of the attention from the research community. The researchers attempt to develop faster, more scalable algorithms to navigate over the ever increasing volumes of spatial gene expression data in search of meaningful patterns. Association rules are a data mining technique that tries to identify intrinsic patterns in spatial gene expression data. It h...

متن کامل

Efficient Mining of Dissociation Rules

Association rule mining is one of the most popular data mining techniques. Significant work has been done to extend the basic association rule framework to allow for mining rules with negation. Negative association rules indicate the presence of negative correlation between items and can reveal valuable knowledge about examined dataset. Unfortunately, the sparsity of the input data significantl...

متن کامل

Indirect Positive and Negative Association Rules in Web Usage Mining

One of the purposes of Web usage mining is to find out interesting user association rules from web server logs. It has become vital for personalization, effective web site management, business and support services, creating adaptive web sites, and so on. In the web domain, items correspond to pages and transactions to user sessions. Indirect associations, type of infrequent pattern provide usef...

متن کامل

Effective Positive Negative Association Rule Mining Using Improved Frequent Pattern Tree

Association Rule is an important tool for today data mining technique. But this work only concern with positive rule generation till now. This paper gives study for generating negative and positive rule generation as demand of modern data mining techniques requirements. Here also gives detail of “A method for generating all positive and negative Association Rules” (PNAR). PNAR help to generates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014